Gvildys, J. (1967). A Fortran Crystallographic LeastSquares Refinement Program, based on ORFLS, Program Library 14E7043, Argonne National Laboratory, Applied Mathematics Division, Argonne, Illinois.
International Tables for X-ray Crystallography (1962). Vol. III, p. 201. Birmingham: Kynoch Press.
Johnson, F. \& Malhotra, S. K. (1965). J. Amer. Chem. Soc. 87, 5492-5493.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.

Remoortere, F. P. van \& Flynn, J. J. (1974). J. Amer. Chem. Soc. 96, 6593-6600.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement, Spec. Publ. No. 18. London: The Chemical Society.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
Zimmerman, H. E. \& Mariano, P. S. (1968). J. Amer. Chem. Soc. 90, 6091-6096.

The Crystal Structure of $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$

By Göran B. Johansson and Oliver Lindqvist
Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, P.O. Box S-402 20 Göteborg 5, Sweden

(Received 9 June 1975; accepted 16 June 1975)

Abstract

$\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ crystallizes in space group $P 2_{1} / m$ with $a=7 \cdot 013$ (2), $b=9.539$ (4), $c=4 \cdot 880$ (2) \AA, $\beta=92.65(3)^{\circ}, Z=2$. The structure was solved from Patterson and electron density calculations with 1289 independent reflexions, and a final R of 0.032 was obtained. The structure consists of tetrahedral SO_{4}^{2-} ions and pyramidal TeO_{3} units connected by Al to form infinite sheets. The Al coordination is approximately octahedral with Al-O distances of $1.864-1.934 \AA$. The $\mathrm{Te}-\mathrm{O}$ and the $\mathrm{S}-\mathrm{O}$ lengths are $1.902-1.939$ and 1.467-1.487 \AA respectively.

Introduction

A new $\mathrm{Te}^{\mathrm{IV}}$ compound, $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$, has been prepared as part of an investigation of tellurate(IV,VI) chemistry under hydrothermal conditions (Moret, 1972) and single crystals were kindly provided by Dr Moret. In most of the previously known Mtellurate(IV) structures, the metal atoms ($\mathrm{Zn}, \mathrm{Cu}, \mathrm{Fe}$) are involved in three-dimensional covalent $\mathrm{M}-\mathrm{O}-\mathrm{Te}^{\mathrm{IV}}$ nets (Lindqvist, 1973; Zeeman, 1971). Only in $\mathrm{BaTeO} 3 . \mathrm{H}_{2} \mathrm{O}$ (Rottersten-Nielsen, Grønbæk-Hazell \& Rasmussen, 1971) can the building units be regarded as Ba^{2+} and TeO_{3}^{2-} ions.
The aim of the present investigation was to examine the effect of the Al atoms on the $\mathrm{Te}^{\mathrm{vV}}$ coordination.

Data collection

Crystals of $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ were first investigated with Weissenberg techniques, the reflexion pattern indicating the space groups $P 2_{1}$ or $P 2_{1} / m$. Accurate cell dimensions were determined from a Guinier powder photograph (Table 1) with KCl as an internal standard ($a_{\mathrm{KCl}}=6 \cdot 2919_{4} \AA$ at $20^{\circ} \mathrm{C}$; Hambling, 1953), (POWDER; Lindqvist \& Wengelin, 1967). Crystallographic data are given in Table 2. The density was determined by flotation in aqueous thallium(\mathbf{I}) formate and malonate ('Clericis Lösung').
The crystal was mounted along \mathbf{c} (for dimensions see Fig. 1) and intensities were collected on a two-

Table 1. Powder data for $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$; $\mathrm{Cu} \mathrm{K} \alpha_{1}$ radiation ($1.54050 \AA$)

$h k l$	$\sin ^{2} \theta$ (obs)	$\sin ^{2} \theta$ (calc)	d (calc) (\AA)	I
100	$0 \cdot 01213$	0.01209	7.006	vw
110	0.01864	0.01861	$5 \cdot 647$	w
020	0.02625	0.02608	$4 \cdot 769$	m
01 T	0.03155	0.03149	$4 \cdot 340$	w
$10 \overline{1}$	0.03566	0.03545	$4 \cdot 091$	w
101	0.03859	0.03866	$3 \cdot 917$	m
$11 \overline{1}$	0.04226	0.04197	$3 \cdot 760$	w
111	0.04513	0.04518	$3 \cdot 624$	w
210	0.05489	0.05487	$3 \cdot 288$	w
12 T	0.06160	0.06154	$3 \cdot 105$	m
121	$0 \cdot 06483$	0.06475	3.027	w
20 T	$0 \cdot 07020$	0.07011	$2 \cdot 909$	m
130	0.07087	0.07077	$2 \cdot 895$	w
220	$0 \cdot 74061$	0.07443	$2 \cdot 823$	w
201	0.07646	0.07653	2.784	s
21 T	0.07646	0.07663	2.782	s
03 T	$0 \cdot 08370$	0.08366	$2 \cdot 663$	m
13 1	0.09424	0.09414	$2 \cdot 510$	m
$00 \overline{2}$	0.10006	0.09988	$2 \cdot 437$	m
221	$0 \cdot 10271$	$0 \cdot 10261$	$2 \cdot 405$	s
040	0.10435	$0 \cdot 10433$	$2 \cdot 385$	m
$01 \frac{2}{2}$	0.10631	0.10640	$2 \cdot 361$	m
$10 \overline{2}$	0.10887	$0 \cdot 10876$	$2 \cdot 269$	w
$11 \overline{2}$	$0 \cdot 11511$	$0 \cdot 11528$	$2 \cdot 269$	s
041	0.12933	0.12930	$2 \cdot 142$	w
$31 \overline{1}$	0.13514	0.13546	2.093	vs
301	$0 \cdot 13862$	$0 \cdot 13858$	2.069	w
141	0.14302	$0 \cdot 14299$	2.037	w
202	$0 \cdot 15478$	$0 \cdot 15466$	1.959	w
$03 \overline{2}$	$0 \cdot 15865$	$0 \cdot 15857$	1.934	w
132	$0 \cdot 17384$	$0 \cdot 17387$	1.847	w
331	0.19734	$0 \cdot 19726$	1.734	w
410	0.20014	0-19992	1.723	w

Table 2. Crystallographic data for $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$

```
\(a=7.013\) (2) \(\AA\)
\(b=9.539\) (4)
\(c=4.880\) (2)
\(\beta=92.65\) (3) \({ }^{\circ}\)
\(V=326 \cdot 1\) (2) \(\AA^{3}\)
\(Z=2\)
\(M=359 \cdot 64\)
\(\varrho_{0}=3.7 \mathrm{~g} \mathrm{~cm}^{-3}\)
\(\varrho_{c}=3.66\)
Space group: \(P 2_{1} / m\)
Equivalent positions: \(\pm(x, y, z) ; \pm\left(x, \frac{1}{2}-y, z\right)\)
\(\mu(\) Mo \(K \alpha)=53.4 \mathrm{~cm}^{-1}\)
Crystal habit: colourless plates (Fig. 1)
```

circle single-crystal diffractometer (Pailred) with gra-phite-monochromated Mo $K \alpha$ radiation. The ω-scanning procedure was used with a scan speed of 2.5° min^{-1}, the background being measured for 24 s at both ends of the scan interval. The layers $h k 0-h k 6$ were recorded up to $2 \theta \sim 60^{\circ} .1531$ independent reflexions were measured of which 1289 with $\sigma(I) / I<0 \cdot 4$ were regarded as significant and used in the subsequent analysis. Intensity statistics and Lp corrections were performed with DATAP1 (Lindgren, 1975). Absorption effects were calculated with DATAP2 (Coppens, Leiserowitz \& Rabinovich, 1965). The transmission factors varied from 0.53 to 0.90 , but were not applied until a preliminary structure was known.

Structure determination and refinement

The exact chemical composition was not known at the start, but Te and Al were known to be present. From the Patterson function (DRF; Zalkin, Berkeley), it was apparent that there were two Te and four Al atoms in the cell occupying positions $2(e)$ and $4(f)$ in space group $P 2_{1} / m$. A complete model was obtained from successive electron density calculations. It then also became obvious that the crystals contained sulphate ions from the $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solutions used in the preparation.

A refinement based on all 1289 observed reflexions and including anisotropic temperature factors and an isotropic extinction factor (LINUS; Coppens
\& Hamilton, 1970) yielded an R of 0.032 . Scattering factors for uncharged Te (Cromer \& Waber, 1965), Al, S and O (Doyle \& Turner, 1968) corrected for the real part of the anomalous scattering (Cromer, 1965) were used.
Weights $w=(c a / F)^{-1 / 2}$ for $F \leq a$ and $w=[c-(F-$ $\left.a)^{1 / 2}\right]^{-1 / 2}$ for $F \geq a$ gave a reasonable analysis for $a=$ $30 \cdot 0$ and $c=50.0$ (Table 3).

Table 3. Weight analysis after the last cycle of refinement
The quantities $w \Delta^{2}$ are normalized sums and N is the number of reflexions within each F_{o} interval.

F_{0} interval	N	$w \Delta^{2}$
0.0-14.2	126	0.90
14.2-17.8	125	0.73
17.8-22.0	133	0.71
22.0- 25.4	125	0.68
25.4-29.0	126	$0 \cdot 55$
29.0-32.7	130	$1 \cdot 10$
32.7-37.8	128	$0 \cdot 84$
37.8-44.7	134	0.91
44.7-57.1	129	0.93
57-1-136.2	133	$2 \cdot 59$
$\begin{aligned} & R=\sum \mid F_{o}-1 \\ & R_{w}=\left(\sum w \mid F_{0}\right. \end{aligned}$	$F_{0}=0$	0.032

Fig. 1. The crystal used for data collection. The crystal volume is $7.56 \times 10^{-4} \mathrm{~mm}^{3}$.

Table 4. Final atomic parameters in $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ The anisotropic temperature factor is $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right]$. Estimated standard deviations in parentheses.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Te	$0 \cdot 18867$ (5)	4	$0 \cdot 31015$ (7)	$0 \cdot 00485$ (18)	0.00479 (11)	0.00510 (11)		0.00034 (7)	
Al	0.0544 (2)	$0 \cdot 5752$ (1)	$0 \cdot 2552$ (2)	$0 \cdot 0080$ (2)	$0 \cdot 0044$ (5)	0.0066 (5)	$0 \cdot 0004$ (5)	0.0007 (3)	0.0000 (3)
S	$0 \cdot 6069$ (2)	$\frac{1}{4}$	0.9623 (2)	$0 \cdot 0049$ (5)	$0 \cdot 0092$ (5)	0.0095 (5)	(5	0.0009 (4)	0.000 (3)
$\mathrm{O}(1)$	-0.0067 (6)	$\frac{1}{4}$	$0 \cdot 5801$ (8)	0.0139 (16)	0.0080 (16)	0.0037 (16)		0.0031 (11)	
$\mathrm{O}(2)$	0.0686 (4)	$0 \cdot 3920$ (3)	0.0887 (5)	0.0109 (11)	0.0030 (10)	0.0062 (11)	0.0008 (8)	-0.0014 (7)	0.0000 (7)
$\mathrm{O}(3)$	$0 \cdot 1682$ (4)	$0 \cdot 4846$ (3)	0.5657 (5)	$0 \cdot 0045$ (10)	0.0091 (11)	0.0085 (11)	-0.0007 (9)	0.0003 (7)	-0.0003 (10)
$\mathrm{O}(4)$	$0 \cdot 4058$ (6)	4	0.8663 (10)	0.0054 (17)	$0 \cdot 0168$ (21)	0.0250 (24)		-0.0018 (14)	-0003 (10)
O(5)	$0 \cdot 6250$ (7)	$\frac{1}{4}$	0.2619 (10)	0.0134 (21)	0.0414 (31)	$0 \cdot 0107$ (22)		-0.0008 (15)	
O(6)	0.7031 (4)	$0 \cdot 3760$ (3)	$0 \cdot 8528$ (7)	0.0106 (12)	0.0095 (12)	0.0221 (16)	-0.0015 (10)	0.0065 (10)	$0 \cdot 0001$ (10)

Isotropic extinction parameter (Coppens \& Hamilton, 1970): $g \times 10^{-4}=0.031$ (5).

The refinement indicated only small extinction effects, the isotropic extinction parameter g (Coppens \& Hamilton, 1970) being $0.031(5) \times 10^{4}$. The final parameter list is given in Table 4.*

The structure was checked with a difference synthesis (FFT; Ten Eyck, 1973). The maximum residual density of $2.4 \mathrm{e} \AA^{-3}$ occurred close to the Te atoms.

Interatomic distances and angles (DISTAN; Zalkin, Berkeley) are presented in Table 5.

[^0]Table 5. Coordination distances and angles in $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$
The notation is in accordance with Figs. 4 and 5.

$\mathrm{Te}-\mathrm{O}(1)$		1.939 (4) \AA	$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}(2)$	94.4 (1) ${ }^{\circ}$
$\mathrm{Te}-\mathrm{O}(2)$	($2 \times$)	1.902 (3)	$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}(3)$	(2×) 67.4 (1)
$\mathrm{Te}-\mathrm{O}(3)$	($2 \times$)	2.567 (3)	$\mathrm{O}(1)-\mathrm{Te}-\mathrm{O}(4)$	169.3 (2)
$\mathrm{Te}-\mathrm{O}(4)$		2.705 (5)	$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}^{\prime}(2)$	90.6 (2)
Al -O(1)		1.889 (2)	$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}(3)$	($2 \times$) 67.9 (1)
$\mathrm{Al}-\mathrm{O}(2)$		1.934 (3)	$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}^{\prime}(3)$	($2 \times$) $149 \cdot 6$ (1)
$\mathrm{Al-O} \mathrm{O}^{\prime}(2)$		1.881 (3)	$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}(4)$	($2 \times$) 78.1 (1)
$\mathrm{Al}-\mathrm{O}(3)$		1.910 (3)	$\mathrm{O}(3)-\mathrm{Te}-\mathrm{O}^{\prime}(3)$	121.2 (1)
$\mathrm{Al}-\mathrm{O}^{\prime}(3)$		1.888 (3)	$\mathrm{O}(3)-\mathrm{Te}-\mathrm{O}(4)$	$(2 \times) 115.8$ (1)
Al -O(6)		1.864 (3)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(2)$	172.7 (2)
$\mathrm{S}-\mathrm{O}(4)$		$1 \cdot 467$ (5)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}^{\prime}(2)$	98.7 (2)
$\mathrm{S}-\mathrm{O}(5)$		$1 \cdot 467$ (5)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}^{\prime}(3)$	98.0 (2)
S-O(6)	$(2 \times$)	$1 \cdot 487$ (3)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(3)$	$84 \cdot 4$ (2)
			$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(6)$	94.7 (2)
			$\mathrm{O}(2)-\mathrm{Al}-\mathrm{O}^{\prime}(2)$	78.9 (1)
			$\mathrm{O}(2)-\mathrm{Al}-\mathrm{O}^{\prime}(3)$	83.9 (1)
			$\mathrm{O}(2)-\mathrm{Al}-\mathrm{O}(3)$	89.0 (1)
			$\mathrm{O}(2)-\mathrm{Al}-\mathrm{O}(6)$	$92 \cdot 3$ (1)
			$\mathrm{O}^{\prime}(2)-\mathrm{Al}-\mathrm{O}(3)$	$96 \cdot 1$ (1)
			$\mathrm{O}^{\prime}(2)-\mathrm{Al}-\mathrm{O}^{\prime}(3)$	162.3 (1)
			$\mathrm{O}^{\prime}(2)-\mathrm{Al}-\mathrm{O}(6)$	95.4 (1)
			$\mathrm{O}(3)-\mathrm{Al}-\mathrm{O}^{\prime}(3)$	79.9 (1)
			$\mathrm{O}(3)-\mathrm{Al}-\mathrm{O}(6)$	168.5 (1)
			$\mathrm{O}^{\prime}(3)-\mathrm{Al}-\mathrm{O}(6)$	89.1 (1)
			$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(5)$	$111 \cdot 0$ (3)
			$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(6)$	($2 \times$) $109 \cdot 2$ (2)
			$\mathrm{O}(5)-\mathrm{S}-\mathrm{O}(6)$	($2 \times$) $109 \cdot 8$ (2)
			$\mathrm{O}(6)-\mathrm{S}-\mathrm{O}^{\prime}(6)$	$107 \cdot 8$ (3)

Discussion

$\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ is not readily classified as either a covalent or an ionic compound. The structure contains TeO_{3} pyramids, SO_{4} tetrahedra and dimeric $\mathrm{Al}-\mathrm{O}$ octahedra, $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{O}_{8}$. The building units share O atoms to form infinite sheets. (Figs. 2 and 3).
The layers are held together by van der Waals forces.

Table 6. O-O distances less than $4 \AA$
An asterisk indicates interlayer contacts, and the notation $-A-$ means that both O atoms belong to the coordination polyhedron of A.

$\mathrm{O}(6)-\mathrm{O}(6)$	2.403 (6) \AA	-S-
$\mathrm{O}(4)-\mathrm{O}(6)(2 \times)$	2.407 (5)	-S-
$\mathrm{O}(5)-\mathrm{O}(6)(2 \times$)	$2 \cdot 416$ (5)	-S-
$\mathrm{O}(4)-\mathrm{O}(5)$	$2 \cdot 419$ (7)	-S-
$\mathrm{O}(2)-\mathrm{O}(2)$	2.424 (5)	-Al-
$\mathrm{O}(3)-\mathrm{O}(3)$	2.434 (5)	- $\mathrm{Al}-$
$\mathrm{O}(1)-\mathrm{O}(3)(2 \times$)	2.553 (3)	-Al-
$\mathrm{O}(2) \cdots \mathrm{O}(3)$	2.555 (4)	-Al-
$\mathrm{O}(3)-\mathrm{O}(6)$	2.663 (4)	- $\mathrm{Al}-$
$\mathrm{O}(2)-\mathrm{O}(3)$	2.695 (4)	-Al-
$\mathrm{O}(2)-\mathrm{O}(2)$	2.705 (5)	-Te-
$\mathrm{O}(2)-\mathrm{O}(6)$	2.740 (4)	-Al-
$\mathrm{O}(1)-\mathrm{O}(6)(2 \times)$	2.761 (5)	-Al
$\mathrm{O}(2)-\mathrm{O}(6)$	2.769 (4)	-Al
$\mathrm{O}(2)-\mathrm{O}(3)$	2.819 (4)	- Al
$\mathrm{O}(1)-\mathrm{O}(2)(2 \times)$	2.819 (4)	-Te
$\mathrm{O}(1)-\mathrm{O}(3)(2 \times)$	$2 \cdot 851$ (3)	-Al
$\mathrm{O}(1)-\mathrm{O}(2)(2 \times)$	$2 \cdot 860$ (4)	-Al-
$\mathrm{O}(1)-\mathrm{O}(5)$	2.948(6)	
$\mathrm{O}(2)-\mathrm{O}(4)(2 \times)$	$2 \cdot 970$ (5)	*
$\mathrm{O}(3)-\mathrm{O}(5)(2 \times)$	3.020 (4)	
$\mathrm{O}(3)-\mathrm{O}(4)(2 \times)$	$3 \cdot 114$ (4)	*
$\mathrm{O}(5)-\mathrm{O}(6)(2 \times)$	$3 \cdot 146$ (6)	
$\mathrm{O}(1)-\mathrm{O}(4)$	$3 \cdot 155$ (6)	*
$\mathrm{O}(3)-\mathrm{O}(6)$	$3 \cdot 227$ (4)	
$\mathrm{O}(4)-\mathrm{O}(5)$	$3 \cdot 379$ (7)	
$\mathrm{O}(2)-\mathrm{O}(5)(2 \times$)	$3 \cdot 533$ (5)	
$\mathrm{O}(2)-\mathrm{O}(3)$	3.725 (4)	-Al-
$\mathrm{O}(3)-\mathrm{O}(6)$	3.755 (4)	-Al-
$\mathrm{O}(2)-\mathrm{O}(6)$	3.764 (4)	
$\mathrm{O}(1)-\mathrm{O}(2)(2 \times)$	$3 \cdot 816$ (3)	$\underset{*}{-\mathrm{Al}}$
$\mathrm{O}(4)-\mathrm{O}(6)(2 \times$)	3.911 (4)	

Fig. 2. A stereoscopic view along a showing how the dimeric Al-O octahedra are connected by the TeO_{3} groups to form infinite sheets (ORTEP; Johnson, 1965).

The positions of the sulphate groups give the sheets a bulky shape (Fig. 3) which may stabilize the ordered packing. The sulphate $\mathrm{O}(4)$ is involved in short interlayer O-O van der Waals contacts (Table 6). It is also possible that weak $\mathrm{Te}^{\mathrm{lv}}-\mathrm{O}$ interactions contribute slightly to the bonding. The $\mathrm{Te}^{\mathrm{V}}-\mathrm{O}(4)$ distance is only $2 \cdot 705$ (5) \AA, which is comparable to the $2 \cdot 64$ (2) found for similar interactions in $\mathrm{Te}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ (Lindqvist, 1967) and $2 \cdot 706$ (4) \AA in $\mathrm{Te}_{2} \mathrm{O}_{5}$ (Lindqvist \& Moret, 1973). In these two compounds there was reason to consider such $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}$ distances as weak bonds.
The H atom positions could not be deduced from the X -ray investigation, but it is reasonable to assume that they are attached to O (3) atoms, which form bridges between two Al atoms (Fig. 4). Similar double $\mathrm{Al}-\mathrm{OH}>\mathrm{Al}$ bridges have been found in diaspore ($\mathrm{Bu}-$ sing \& Levy, 1958) and in $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]\left(\mathrm{SO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and the corresponding selenate (Johansson, 1962); the bridging hydroxide groups participated only in weak hydrogen bonds. In $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ only one of the distances $\mathrm{O}(3)-\mathrm{O}(5)$ (intralayer) of 3.020 or $\mathrm{O}(3)-\mathrm{O}(4)$ (interlayer) of $3 \cdot 114$ may correspond to a hydrogen bond (Table 6). However, since both distances are long, it is doubtful if there are any hydrogen bonds in the structure.

The octahedral Al coordination includes, apart from the two $\mathrm{O}(3)$ bridge bonds, O atoms from three different TeO_{3} groups and one sulphate O (Figs. 2 and 4, Table 5). The Al-O distances are similar to the 1.851 (2)-1.980 (3) in diaspore (Busing \& Levy, 1958) and the $1 \cdot 85-1 \cdot 95 \AA$ (Johansson, 1962) in $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]\left(\mathrm{SO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Fig. 4). The dimeric anion $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{4-}$ has a very short O-O distance across the double bridge of $2 \cdot 39 \AA$. The corresponding value for $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ is only slightly longer, $2 \cdot 434$ (5) \AA.
The coordination of Te is threefold pyramidal (Fig. 5, Table 5), similar to that found in other tellurates(IV) (Zeeman, 1971; Lindqvist, 1973) with Te-O distances of $1.85-2.00 \AA$. In addition, there are three longer
bonds: $\mathrm{Te}-\mathrm{O}(3)(2 \times)$ of 2.567 (3) and $\mathrm{Te}-\mathrm{O}(4)$ of $2 \cdot 705$ (5) Å.

Generally, the weaker $\mathrm{Te}^{1 \mathrm{v}}-\mathrm{O}$ bonds have rather asymmetrical geometry, since the O positions are determined mainly by stronger bonds to other atoms

Fig. 4. The O coordination within the dimeric group in (a) $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]\left(\mathrm{SO}_{4}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}$ and $(b) \mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$. The H atoms are probably bonded to the bridging O atoms.

Fig. 3. A stereoscopic drawing of the structure along c showing the adjacent layers of $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ (ORTEP; Johnson, 1965).

Fig. 5. The O coordination of $\mathrm{Te}^{\mathrm{IV}}$.
(Lindqvist, 1973). However, in $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ the $\mathrm{Te}^{\mathrm{IV}}$ coordination may be regarded as distorted octahedral. Such octahedral $\mathrm{Te}^{\mathrm{IV}}$ coordination has been found in TeCl_{4} (Buss \& Krebs, 1971) and $\mathrm{TeCl}_{3}^{+} \mathrm{AlCl}_{4}^{-}$(Krebs, Buss \& Altena, 1971) where the short $\mathrm{Te}-\mathrm{Cl}$ distances are 2.311 and $2.276 \AA$ and the longer ones 2.929 and $3.062 \AA$, respectively. Buss \& Krebs (1971) suggest that this arrangement is due to the ionic character of the structures. Correspondingly, the octahedral distribution of O atoms at short and long distances around $\mathrm{Te}^{\mathrm{IV}}$ may indicate the presence of TeO_{3}^{2-} ions in $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$. On the other hand, the $\mathrm{Te}-\mathrm{O}$ distances in $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$ are slightly longer than those of 1.847 (7)-1.859 (6) \AA found in the ionic $\mathrm{BaTeO}_{3} . \mathrm{H}_{2} \mathrm{O}$ (Rottersten-Nielsen et al., 1971). This elongation is probably due to the presence of the three weak $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}$ interactions in $\mathrm{Al}_{2}(\mathrm{OH})_{2} \mathrm{TeO}_{3} \mathrm{SO}_{4}$, but can also be due to the fact that the TeO_{3} oxygen atoms participate in the Al coordination octahedra.
The sulphate groups have the usual bond distances and angles (Table 5). The slight distortion from a
regular tetrahedron is presumably due to the fact that $\mathrm{O}(6)$ is coordinated to Al.

We thank Professor G. Lundgren for his support and criticism and Dr S. Jagner for revising the English text. Financial aid has been provided by the Swedish Natural Science Research Council (NFR, contract No. 2318).

References

Busing, W. R. \& Levy, H. A. (1958). Acta Cryst. 11, 798803.

Buss, B. \& Krebs, B. (1971). Inorg. Chem. 10, 2795-2800.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A 26, 71-83.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104 109.

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-399.
Hambling, P. (1953). Acta Cryst. 6, 98.
Johansson, G. (1962). Acta Chem. Scand. 16, 403-420.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Krebs, B., Buss, B. \& Altena, D. (1971). Z. anorg. allgem. Chem. 386, 257-267.
Lindgren, O. (1975). To be published.
Lindqvist, O. (1967). Acta Chem. Scand. 21, 1473-1483.
LindQvist, O. (1973). Thesis. Univ. of Göteborg, Sweden.
Lindqvist, O. \& Moret, J. (1973). Acta Cryst. B29, 643650.

LindQvist, O. \& Wengelin, F. (1967). Ark. Kem. 28, 179191.

Moret, J. (1972). Thesis. Université des Sciences et Techniques du Languedoc, Montpellier, France.
Rottersten-Nielsen, B., Grønbek-Hazell, R. \& Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3040.
Ten Eyck, L. F. (1973). Acta Cryst. A29, 183-191.
Zeeman, J. (1971). Mh. Chem. 102, 1209-1216.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementray Publication No. SUP 31205 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, White Friars, Chester CH1 1NZ, England.

